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This paper develops concepts and equations for the characterisation of a
frequency shifting force shaker which can be employed to excite low frequency
structures into resonance. Force which is developed at a high frequency can be
employed for excitation at a very low frequency. Frequency shifting is
accomplished by moving a shaker to and fro in a reciprocating manner parallel
to the structure which it is exciting while the shaker force acts perpendicular to
the structure. Simple equations which relate the generalised force ratio to a length
ratio are developed along with the positions on a structure where a frequency
shifting shaker should be placed. This information allows the engineer some
simple choices for the design and operation of a frequency shifting shaker. Also,
this investigation develops criteria for which the frequency shifting shaker
outperforms an ordinary shaker operating at the natural frequency of a structure.
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1. INTRODUCTION

Large structures such as buildings, towers and bridges may have natural
frequencies much lower than one Hertz. For the purpose of experimental study
of the dynamic behaviour of such structures a shaker is usually required to force
them into motion, normally at the lowest natural frequency. At low frequencies
the performance of out-of-balance mass shakers is poor due to the low operational
frequency. The purpose of this paper is to present a method of force frequency
shifting which employs an out-of-balance mass shaker, electrodynamic shaker or
other device which operates efficiently at a high frequency and shifts the force to
a lower frequency. The starting point for the approach is an analysis given by
Timoshenko [1] of a pulsating load, moving at a constant velocity across a bridge.
The generalised force acting on any mode of the bridge has a sum and difference
frequency under such a loading condition. From the Timoshenko analysis the
concept of a frequency shifting vibration shaker was introduced by Koss [2] and
Koss et al. [3] giving both theoretical and experimental results of investigations
which verify the frequency shifting principle. The principle is based upon moving
a vibration shaker to and fro at one frequency whilst the vibration shaker acts as
a different frequency. A force is generated at a sum and difference frequency from
these two operational frequencies; the amplitude of the force at these two
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frequencies only depends upon the amplitude of the force of the shaker frequency.
Work presented herein applies this concept to four beam/bridge types resulting in
simple formulas for calculating generalised force from geometrical properties of
the structure and the throw of the shaker. This paper also gives criteria for the
frequency shifting shaker, FSS, to generate a generalised force greater than an
out-of-balance mass shaker which operates at a low frequency, i.e., the difference
frequency. A second method of analysis is given in Appendix 1 where the results
are similar to that given in section 3 in the body of the paper. Experimental
verification is given in Appendix 2.

2. ANALYSIS OF SHAKER

2.1.  

The Timoshenko analysis is for a simply supported bridge whose mode shape,
fi (x), for vibrational mode i is given by

fi (x)= sin (ipx/l), (1)

where x is distance across the bridge and l is the bridge length; see Figure 1. A
generalised force for mode i, Qi , is given in [1] for the condition of a force P
moving at a constant velocity, v, across the bridge. This generalised force is

Qi =P cos vt sin (ipvt/l). (2)

In equation (1) the term vt replaces x in order to obtain equation (2); this is the
Timoshenko method. The force, P, is given by

P=mobev2, (3)

where v is radian frequency and mob is out-of-balance mass with eccentricity e.
The generalised force in equation (2) can be expanded out to give Qi as follows

Qi =P(sin (ipv/l−v)t+sin (ipv/l+v)t)/2. (4)

Thus, each mode i of the simply supported bridge is acted on by a generalised force
at a difference and at a sum frequency. Also, the force P is generated at frequency
v and at low frequencies the force P would be small as v is small, thus operating
a shaker at a low frequency would not be of interest for exciting a low frequency
structure by this technique. For frequency shifting to be an efficient method of low
frequency excitation, the force P should be generated at a relatively high

Figure 1. Oscillating force moving at a constant velocity v across a simply supported bridge of
length l.
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Figure 2. Representation of a reciprocating shaker on a bridge of length l. x0 is the shaker
equilibrium position and r is the amplitude of reciprocating motion (throw).

frequency. The sum frequency term will also excite the ith structural mode at a
frequency higher than that of the shaker.

The difference frequency term of equation (4) presents somewhat of a practical
problem as illustrated by the following example. Given a bridge of 20 m length,
natural frequency of 0·5 Hz (p rads−1) and a shaker operating frequency of 5 Hz,
the velocity of the shaker across the bridge would have to be 180 ms−1 to shift the
force from 5 Hz to 0·5 Hz. This method of frequency shifting seems to be
impractical due to the high velocities required. Another method of frequency
shifting is presented in the next section using reciprocating motion to slide an
out-of-balance mass shaker to and fro along a structure. The method of analysis
is the same as used by Timoshenko [1].

3. GENERALISED FORCE FOR A FREQUENCY SHIFTING SHAKER (FSS)

In this section the case of a reciprocating vibration shaker which acts on several
different structures is considered. A general layout of the shaker on a structure
is shown in Figure 2. In this case two frequencies exist, a shaker operating
frequency v1 in rads−1 and a reciprocating frequency v2 in rads−1. Reciprocating
motion amplitude is r in m and the equilibrium position of the shaker on the
structure from the origin is x0. The appropriate mode shape for each structure has
to be employed to obtain the correct generalised force for the given structure.

Simple relationships between the generalised force, P, r and the length of the
structure, l, are developed in a non-dimensional format for a simply supported
bridge, a cantilever column, a free–free beam and a fixed–fixed beam (bridge).
Also, the force gain of a reciprocating frequency shifting shaker over that of a
shaker operating at a low natural frequency is developed herein.

3.1.    ()

Consider the case of a vibration shaker the position of which along a simply
supported beam is given by

x= x0 + r sin (v2t), (5)

where x0 is an equilibrium position, r is amplitude of reciprocating motion and
v2 is the frequency of the reciprocating motion. The virtual work, dw , performed
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by the shaker force, P sin v1t, operating through a virtual displacement dqi for
mode i is given by

dw =P sin (v1t) sin (ip(x0 + r sin v2t)/l)dqi , (6)

where equation (5) is substituted into equation (1) for x.
The generalised force for mode i, Qi , is then given by dw /dqi

Qi =P sin (v1t) sin (ip(x0 + r sin v2t)/l). (7)

If the generalised force, Q1, for the first mode if a stucture is considered, i.e., the
lowest natural frequency, and the force P is brought to the left side of equation
(7), equation (7) becomes

Q1/P=sin (v1t) sin (p(x0/l+(r/l) sin v2t)). (8)

Equation (8) is in an non-dimensional format, thus Q1/P can be described by

Q1/P=function ((r/l)a, (x0/l)b, (v1/v2)c), (9)

where a, b, c and the functional relationship can be determined by analysis of
equation (8).

The procedure for the analysis is as follows: (a) calculate Q1/P time histories
for various values of the three ratios in equation (9); (b) Fourier transform the
time histories obtained in (a) and take absolute value of the spectral peak at the
difference frequency (the same amplitude exists at the sum frequency); (c) Obtain
relationships between Q1/P and the dimensionless terms in equation (9).

An analysis for a simply supported beam is given first. A Q1/P time history for
r/l=0·05, x0/l= r/2 and v1/v2 =1·25 is shown in Figure 3. This time history has
a low frequency component and several high frequency components and its
Fourier spectrum is given in Figure 4 which demonstrates the existence of these

Figure 3. A Q1/P time history for a simply supported beam for ratio values of r/l=0·05,
x0/l= r/2 and v1/v2 =1·25. v1 =10p rads−1, (5 Hz) and v2 =8p rads−1 or (4 Hz).
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Figure 4. Frequency spectrum of Q1/P for the time history given in Figure 3. The Matlab routine
used to generate the spectrum gives a mirror image for frequencies above 26 Hz.

components. In this example v1 is 10p rads−1 (5 Hz) and v2 is 8p rad−1 (or 4 Hz),
which gives a difference frequency of 2p rads−1 (1 Hz) and a sum frequency of 18p

rads−1 (9 Hz). In Figure 4 the difference frequency, the forcing frequency and the
sum frequency are present and components at these frequencies may excite the first
mode of vibration. A spectrum of Q1/P for r/l=0·005 and x0 = r/2 is shown in
Figure 5. Further analysis shows that the amplitudes of Q1/P at the difference and

Figure 5. Frequency spectrum of Q1/P for a simply supported beam for ratio values of
r/l=0·005, x0/l= r/2 and v1/v2 =1·25. v1 =10p rads−1 (5 Hz) and v2 =8p rads−1 (4 Hz). The
difference frequency is 1 Hz and the sum frequency is 9 Hz. (A mirror image also exists for this
spectrum.)
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Figure 6. Q1/P/(r/l) versus x0/l for a simply supported beam.

sum frequencies are independent of force or reciprocating frequencies, and the
ratio of Q1/P is a trigonometric quantity given by Equation (8).

The dependence of Q1/P on r/l is linear as can be seen by comparing the
amplitude of the difference frequency component in Figures 4 and 5 for different
values of r/l. The relationship between Q1/P/(r/l) and x0/l is shown in Figure 6
and is symmetrical about the centre line of the bridge. If a FSS is placed at the
bridge centre, neither a difference or sum frequency would be developed;
Maximum Q1/P is obtained when the shaker is placed at the beginning or at the
end of the bridge.

For a FSS placed at the beginning or at the end of the bridge, the relationship
for Q1/P at the difference or sum frequency and r/l is independent of frequency
ratio and is given by

Q1/P=1·65r/l. (10)

To understand how this shaker, FSS, operates, it is noted that the slope of a simply
supported beam is maximum at the supports and is zero of the bridge centre and
the FSS operates most efficiently near the supports. Thomson [4] gives a
relationship between generalised force, moment and slope for a beam structure as

Qi =M(x, t)f'i (x), (11)

where M(x, t) is a moment and f'i (x) is the mode shape slope. The relationship
shows that Qi would be greatest for maximum slope for a given moment or torque
acting on the bridge, thus suggesting that the FSS is a moment shaker. The
force P operates over a distance r, thus giving a moment. The analysis given in
Appendix 1 is based upon equation (11).
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T 1

Data for different beam types

Beam type b1l s1

Free–free 4·73 0·98
Cantilever 1·87 0·73

Fixed–fixed/free–free 4·73 0·98

3.2. , –  – 

Using an analysis similar to that given in section 3.1, the dimensionless
generalised force for mode one, Q1/P, of cantilever, fixed–fixed and free–free
beams can be obtained. Inman [5] gives the form of the mode shape of the above
beams as

f1(x)= cosh (b1x)+ cos (b1x)− s1(sinh (b1x)− sin ((b1x)), (12)

where b1l and s1 are given in Table 1 (note that for a free–free beam the signs
have a different value.) For the evaluation of the generalised force for these three
beam types x is replaced by x0 + r sin (v2t) from equation (5) and the virtual work
procedure is used to obtain for the first mode of vibration

Q1 =P sin (v1t)f1(b1(x0 + sin v2t)). (13)

Equation (13) is then evaluated for the three beam types.
A spectral result for Q1/P for a cantilever beam for r/l 0·05, x0/l=0·995 and

v1/v2 =1·04 is given in Figure 7. For this beam the spectral amplitudes at the sum
and difference frequencies do not have the same amplitude as that at the force

Figure 7. Frequency spectrum of Q1/P for a cantilever beam for ratio values of r/l=0·05,
x0/l=0·995 and v1/v2 =1·04. v1 =50p rads−1 (25 Hz) and v2 =48p rads−1 (24 Hz). Difference
frequency is 2p rads−1 (1 Hz). Mirror image of spectrum above 56 Hz.
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Figure 8. Q1/P/(r/l) versus x0/l for a cantilever beam.

frequency. This is also true for the free–free and fixed–fixed beams. The
dependence of Q1/P/(r/l) with x0/l for a cantilever beam is given in Figure 8 and
follows the concept that at a small mode shape slope amplitude Q1/P will be small,
i.e., near the fixed end, and at large mode shape slope values Q1/P will be large,
i.e., at the free end.

Thus, the maximum value of Q1/P for a cantilever beam is

Q1/P=1·50r/l. (14)

Figure 9. Q1/P/(r/l) versus x0/l for a free–free beam.
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Figure 10. Q1/P/(r/l) versus x0/l for a fixed–fixed beam.

The relationship between Q1/P/(r/l) and x0/l for a free–free beam is given in
Figure 9 and is somewhat similar to that for the simply supported beam given in
Figure 6. For a fixed–fixed beam the relationship between Q1/P/(r/l) and x0/l is
given in Figure 10 where maximum values are at 22% and 78% along the beam
length. The maximum generalised force ratio for a free–free beam is

Q1/P=5r/l; (15)

and for a fixed–fixed beam is

Q1/P=2·58r/l. (16)

Results for generalised forced ratios are summarised in Table 2.

T 2

Maximum non-dimensional first mode generalised
force ratios

Beam type Q1/P x0

simply supported 1·65 r/l r/2 or l− r/2
fixed–fixed 2·58 r/l 0·22 l or 0·78 l
cantilever 1·50 r/l l− r/2
free–free 5·0 r/l r/2 or l− r/2
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T 3

Maximum generalised force gain ratios

Gain ratio
Beam type (r/l)(v1vn )2

simply supported 1·65
fixed–fixed 2·58
cantilever 1·50
free–free 5·0

4. GENERALISED FORCE GAIN RATIO

A unidirectional force generated, PSH , by an out-of-balance mass shaker at the
lowest natural frequency of a structure, vn , is given by

PSH =mobev2
n sin (vnt) (17)

and the generalised force of PSH acting on a simply supported beam would be

Q1SH =mobev2
n f(l/2) sin (vnt) (18)

Usually f(l/2) is 1 or z2 depending upon the mode shape scaling and a value
of 1 will be employed here. The amplitude of Q1SH is mobev2

n . If a FSS shaker is
employed for the same task then Q1 would be, see Table 2,

Q1 =1·65(r/l)mobev2
1 , (19)

noting that v1 is much greater than vn .
If it assumed that the ordinary shaker and the FSS have the same out of balance,

mobe, then a ratio of Q1 over Q1SH gives a gain ratio

gain ratio=1·65(r/l)v2
1 /v2

n . (20)

The gain ratio is greater than one if

1·65(r/l)v2
1 qv2

n , (21)

and then a frequency shifting shaker will deliver a generalised force greater than
an ordinary shaker. In general, however, a factor greater than one may be applied
to the right side of equation (20) to account for the fact that a motive drive for
the reciprocating mechanism is required and has mass also. In Table 3 is listed
the maximum gain ratios for all four beam types considered in this paper.

4.1.  

Several practical problems have to be examined prior to the design of a full scale
FSS. The first item is the choice of r, v1 and v2 noting that l is a fixed quantity
as it is determined by the structure to be tested. Also, the constant in Table 2
column 1, (which multiplies r/l) is also determined by structure type and if the
FSS is to generate a force greater than an ordinary shaker, then equation (20) has
to be satisfied for a simply supported beam and similar equations for other beam
types. In general then a FSS shaker would generate a force greater than an
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Figure 11. Plot of v1 =SQRT (1/(r/l)vn for frequency shifting shaker to have some force as
ordinary shaker operating at vn . Notation is ——, simply supported beam; ×, cantilever beam;
····, fixed–fixed beam and +, free–free beam.

ordinary shaker if the operational frequency of a FSS satisfies the following
inequality

v1 q (1/factor ( r/l)1/2vn (22)

where the factor term is given in column 1 of Table 2 for the different beam types
e.g., 1·50 for a cantilever beam. A plot of equation (22) for the different beam types
is given in Figure 11 where v1 should be greater than the ordinate value to satisfy
equation (22).

The second item to consider is balancing of inertia forces generated by the
movement of the shaker parallel to the structure due to the reciprocating motion
to and fro. Inertia forces would be larger than the shaker forces due to motors,
bearings and shafts all of which are moving parallel to the structure. Thus,
balancing of forces in the parallel direction may be required.

A force frequency shifting shaker could also be employed with an active
vibration controller to reduce motions for tall structures.

5. CONCLUSIONS

Concepts for the development of a frequency shifting shaker for use on several
different beam structures have been developed in this paper. This shaker is based
upon moving an ordinary shaker, and an out-of-balance mass or electrodynamic
with inertial mass, to and fro along a structure. If the ordinary shaker operates
at frequency v1 and the reciprocative motion occurs at v2, then forces are
developed at a difference frequency, v1 −v2 and at a sum frequency, v1 +v2.
Analysis of equation (7) gives a relationship between the generalised force ratio,
Q1/P and r/l which is a ratio of shaker throw to structural length. These relations
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are given in Table 2 and further analysis demonstrates that a frequency shifting
shaker can develop a greater generalised force at a lower frequency than an
ordinary shaker acting at the low frequency for the same amount of out of balance.
The structure type dictates where a frequency shifting shaker should be placed on
the structure to achieve maximum force shifting; these positions are given in Table
2. Analysis of the relationships between Q1/P and x0/l indicates that the shaker
behaves as a moment shaker in its action as demonstrated in Appendix 1.

Benefits include the generalised force ratio to be independent of shaker
operating frequency, v1, and thus a constant force sine sweep can be developed.
A very wide operating frequency range can be achieved and the requirement of
having only one speed controller if the shaker is operated at constant speed.

This shaker is considered to be an important development for testing of
structures at low frequencies. Some practical aspects were also considered for the
use and design of a frequency shifting shaker. Experimental verification is given
in Koss et al. [3], Koss [2] and in Appendix 2.
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APPENDIX 1. ALTERNATE METHOD OF CALCULATING FREQUENCY
SHIFTED GENERALISED FORCES

The generalised force for a moment acting on a beam at position x0 is given in
Thomson [4] as

Qi =M(x, t)f'i (x0), (A1)

which is equation (11) in the main body of this paper. The fluctuating moment
M(x0, t) is given by

M(x0, t)=P sin (v1t)r sin v2t. (A2)
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T A1

Maximum mode shape slope values

Normalised mode
Beam type Root shape slope Slope

Fixed–free 1·87/l 1·468 2·75/l
Fixed–fixed 4·73/l 1·03 4·87/l
Free–free 4·73/l 1·96 9·27/l

For a simply supported beam, the most efficient position to place this moment is
at either support position i.e., x0 3 0 or x0 1 l where the moment slope f'i (x0) is
maximum. The mode shape for a simply supported beam is

fi (x)= sin (ipx/l) (A3)

and the slope of the mode shape is

f'i (x)= (ip/l) cos (ipx/l). (A4)

Thus, the generalised force becomes

Qi =P sin (v1t)r sin (v2t)((ip/l) cos (ipx/l)). (A5)

Letting i=1 and employing sum and difference trigonometric formulas; the
generalised force becomes

Q1 =−(Ppr/2l)(cos (v1 −v2)t+cos (v1 −v2)t), (A6)

where the amplitude of Q1 in equation (A6) for the simply supported beam has
a value of 1·57 Pr/l which is compared to 1·65 Pr/l given by equation (10) in the
body of the paper.

Generalised forces for a fixed–fixed beam, cantilever beam and free–free beam
are obtained from data for mode shape slopes given in tables of Appendix C of
Thomson [4]. The mode shape slope values obtained from a normalised mode
shape slope and the product of the root of the first mode are given in Table A1.
Combining equations (A1), (A2) and Table A1 values and using trigonometric
identities gives the following maximum amplitudes for Q1 at the sum and difference
frequencies:

Fixed–free 1·38Pr/l, Fixed–fixed 2·43Pr/l, Free–free 4·63Pr/l.

(A7)

Comparison of the results of (A7) to that in Table 2 indicates that the maximum
amplitudes calculated by the two methods are within 10% of each other. Note that
the data given in Table 2 were calculated digitally and amplitudes were obtained
by cursor picking.
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Figure A1. Schematic of experimental testrig: support a; brackets b, c and d; accelerometer e;
roller f; beam g, steel table h; i roller; j roller table; shaker quill k; shaker 1; connecting rod m; crank
n; and flywheel o.

Figure A2. Frequency spectrum displacement of a 2 m long cantilever beam with a natural
frequency of 1·8 Hz with accelerometer attached. Shaker frequency is 5·8 Hz and slider crank
frequency is 4 Hz with a throw of 2 cm. The difference frequency of 1·8 Hz, the sum frequency of
9·8 Hz, the shaker frequency of 5·8 Hz and the crank frequency of 4 Hz and it harmonic at 8 Hz
are all clearly evident.

APPENDIX 2. EXPERIMENTAL VERIFICATION

The concept of force frequency shifting was verified by testing a cantilever beam
using an experimental rig shown schematically in Figure A1; reference will now
be made to this figure. The base of an electrodynamic shaker l, is attached to a
slider crank mechanism, j, m and n, which rolls on wheels i. The quill of the shaker,
k, is attached to the beam, g, by a roller device, f. A Kistler accelerometer, e, sits
on top of the beam and the beam is attached to the support, a, by brackets b,
c and d. The slider crank rolls on the steel table h.
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The beam with accelerometer attached has a natural frequency of 1·8 Hz and
the throw of the crank, n, is 2 cm. The flywheel, o, has a rotational frequency of
4 Hz and the shaker has an operational frequency of 5·8 Hz. The acceleration
spectrum was measured with a 2 channel AND spectrum analyser; to obtain a
displacement spectrum the acceleration spectrum was divided by frequency
(rads−1) squared. Peaks on the frequency spectrum should appear at the difference
frequency of 1·8 Hz, the shaker frequency of 5·8 Hz and the sum frequency of
9·8 Hz. An examination of the displacement spectrum given in Figure A2, shows
the presence of these frequencies plus the slider crank frequency of 4 Hz and its
harmonic at 8 Hz. This experimental result verifies the frequency shifting concept.
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